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The system of equations, describing the behavior of a two-temperature {(ion
temperature unequal to electron temperature) fully-ionigzed plasma [1], appears
very complicated for the solution of concrete problems.

In the equation of motion, in addition to lon viscoslty, there also enters
the electron viscosity, which is usually neglected for a one-temperature
plasma (ion temperature equal to electron temperature). The problem is
strongly complicated by the anisotropy of the transport ccefficients, which
we must consider when ©T;221,®,,221; here o, and w, denote the cyclo-
tron frequencles of the electrons and lons, and 7, and 1, denote the "mean
collision times" of the electrons and lons. Thus, instead of two thermal
conductivity coefficients for the ions and electrons and an electrical con~
ductivity, we must now write three thermal conductivities for the electrons,
three for the ionz, and three electrical conductivities, Viscoslty in this
case 1s defined by five coefficlents for the electrons, five for the ions,
and ten second-rank viscosity tensors for the lons and electrons.

In the present paper, we shall estimate the different terms in the egqua~-
tions in order to slmplify them, We write the values of the various criti-
cgl parameters, for which various simplifications may be made {i.e. neglec-
ting the anisotropy in the transport coefficlents, the viscosity of the elec-
trons in the equation of motion or in Ohm's law, etc.). It turns out that
for certaln values of these parameters, the viscoua terms must. be kept in
the Ohm's law, so that Ohm's law becomes a differential equation and not
Just an algebralc relation. Alsc possible are cases when electron viscosity
should be considered in the equation of motlon while the ion viscosity may
be neglected, etc. Most of these phenomena are connected with two-temperature
plasmes and do not appear in one-temperature plasmas.

1. The systenm of equations for a fully ionized two-temperature plasma.
We shall consider & fully lonized plasma, consisting of two components, ions
and electrons. For definiteness, we assume that the lons are singly ionized.
In [1], the followlng system of equations was obtalned describing the behav~
lor of such plasmas:
ar

7]
55— 4 div ng ve = 0,

an, ) d; )
- T diva;v =0 (E’Z—z—5{+(vjv) ) (1.1)
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dy,e ap, dm,aB 1
MeNe 7 = — 52—a— —_ —a‘z;—— —éen (Ea + _c— (va X H)a) + Ra (1.2)
divo ap, dm aB
min; "'a—l-— = — 6_:1:_‘ - "5:‘;;—"}‘ en (E +—(Vi XH)G)
. a7 a
.;.. e ® div v, = — div q, — 7,28 ;; + Q.
1.3
3 diT{ d ap? .
-5 M + pidivvyy = —divg —m +Oi

Here n 1s the number of particles per unit volume, v the velocity, m
the particle mass, p and n the pressure and viscous stress ‘ensor, e the
proton charge, B and K the electric and magnetic fields, 7T the temper-
ature, R the force of interaction on the electrons by the ions, q the
heat flux with known components. Subscript e refers to electron quantities,
subscript ¢ to lon quantities.

Qe=—Ru—'Y(T3—T1), 0i=Y(Te—T{)’ (14)
Yy = 3men, / mit,, U=V, — vy
R,= —ajuy —a;u; —a, uxh, h=H/H
R =R, + Ry, S (1.5)
Rr=—8y*TyTe—B*Ty, Te —B.*Th x yT.
qcu — ﬁnTuu“ + ﬁ_LTuu_L _*_ﬁATuth
G = q* + @7, QT = —%°y;Te — %,y Te — %x.¢h x yT, (1.6)
G = — %'y Ti — %'y, T +x%.th X yT;
The form of the tensor gzg and the coefflelents a, B, x, n are glven
in [1] (Formulas (4¥.30) to (4.45)).

The symbols || and | on vectors denote the components of the vectors
taken along the perpendicular to the magnetic field direction.

In the derlivation of these equations, we have used the fact
8’=8/2 n,-T,-, Co": 3/2

where ¢ 1s the internal energy per unit volume, and o, 18 the specific
heat per molecule,

To close the system, we must add the equations of state for the electrons
and ions p,=n,T, and p,= n,T; and Maxwell's equations

A _ 1 oH
rot H = —j, rot E = — — =
divH =0, divE = 4np, 1.7

Ir what follows, without losing generality, we shall assume plasmas as
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being quasi-neutral, n,%n,=n .

2. Anisotropy of the transport coefficients, First of all, it is possi-
ble to simplify the expressions for the transport coefficlients appearing in
Formulas {4,30) to (4.45) [1], and thus, also the expresslons for the fluxes
R and ¢ . From these formulas, it is clear that the coefficlents
B, » depend on w,T, &and w,T, .

Ms @

The conductivity of the medium, ¢ , defined by the usual formulas
oy =ent/ay, oj=en?/a,, o,=én’la,
also depend on w,T, .

The dependence of the transport coefficients on w,r, and w,T, 1z called
the anisotropy of the transport coefficients, As is readlly seen, when
w,Te €1 and w, 71, € 1 , the anisotropy is not significant, and the trans-
port coefficients are obtained from Formulas (4.30)to (4.45) of [1], wilth
w,Te=0 for w,7, €1 and w,7,= 0 for w,r, €1 . When w,7, €1 and
w, T, € 1, the viscous stress tensors for the lons and electrons become par-
ticularly simple. Instead of the five viscous coefficlents for the electrons
and five for the ions, there remain only four coefficlents in all, two for
the electrons and two for the lons.

We shall clarify for which values of the macroscoplic parameters the quan-
tities w,r, and w,r, become small. The expressions for w,7, and w7,
are well known [1].
3Ym, TP  35.4m T eH

= = - = = 1.76.10'H
4V 2n Aetn, 0.4r  n’ Qe = e (2.1)

—= iy i Y m
7 = 3Vr_n}T4 — 3.408 ‘ml Ly = 0.96-108 H —*
4V n Aetn 010 \Zm, n m;

Ts

h=234—~—1151082 + 345108 T,

The values 7T, and 7,, for which w,rv,= 1 and
w,Ty= 1 , may be found from Equation (2.1) and
will be denoted by 7,* and 7,* respectively.

! . We can ‘find the explicit expressions for T.* and
v Z‘i* , 1f we neglect the influence of the dependence
b of A on T, ; this approximaticn 1s valld for
a small range of varilation of 7, round T,» iev.

o

In the 7T,, T, plane (fig.1l), we draw the
stralght lines 7T, = T,* and T, = 7,* . This gives
us four regions. 1In region (1), w,7, < 1 and

w;T,< 1, and the anisotropy in the transport coef-

ficients may be completely neglected. In region

(2), w,7.< 1 and w7,> 1 , we may neglect the
Fig. 1 anisotropy in the transport coefflclents for the
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electrons, while in region (%), @,r, > 1 and w,r, < 1 , those for the
ions. In reglon (3}, w,t, > 1 and w, 7, > 1 , we must conslder the aniso-
trepy in the transport coefficients for both the electrons and the ions.

The form of the transport coefflclents to be used in each of the regilons
(1) to (4) are given by (4.30) to (4.45) in [1], which as indlcated above,
simplify drastically when w,7, <€ 1 and w,7, <€ 1 , and also when w,7, >1
and w,T, > 1.

In the latter case, we must set in Formulas (4.30) to (4.45) w,7, » « and
wx'r:-ew

We note that in the case of a one~temperature plasma
1
W TS 0T, = (m; / 2m,) A

Thus for w,7, of the order unity or even greater than unity, w,T, remalns
smaller than unity. In a two-temperature plasma with large 7,, the quan-
tity w,; T, may exceed w,T, .

3. EBEstimation of terms in the equations of motion., Instead of variables
Nes N1y Vos ¥, , 1t 18 convenient to introduce the density p , mean velocity
v , and current J , as 1s usually done with one~temperature plasmas,

P = men, + min,, PV = MeNeVe + Minivi, j=en(vi—vVe) (3.41)

In what follows, we shall consider that Mi/ Me = M >> 1. (We note that
the plasma equations in [1] were alsoc written for this case), Adding Equa-
tions (1.1), and also Equations (1.2), we obtain (*) the equations for o

and Vv 3 . dpv* : 0
—3% + div pv = 0, -g%— + divpver = .__a?a(Pa +pi) —

ad
- gﬂ(ﬂ‘!e"‘B + @) —:-j X H — div p, u u= (3.2)

We estimate the terms appearing in Equation {3.2). To this end, we intro-
duce the characteristic parameters: dimension L , veloclity v , problem
time T , characteristic problem frequency Q = V/I , current I , and also
the nondlmenslonal difference

[vi—ve |/ V=1/enV=U

We shall consider that the order of the inertial term and that of the
viscous force, the pressure term, and the diffusion term div p. m all do

*) We note that the sums p,+ p, and m,+ m, , in general, are not equal to
the total pressure and viscous stress of the mixture p» and n , since in
defining p,, m, and 7,, the random velocity of the jth compopent has been
taken to be V£ =V, — V¥, rather than ¥*i='V, — V(here V4 Vj; V  are res-
pectively the true velo@ity of the jth type particle, thé mean velocity of
the jth type particle and the mean velocity of the mixture) [2].

Consideration of this difference between the viscous and thermal pres=-
sures in terms of V;° and v*, will be made only for extreme accuracy. This
is due to the fact that the equations as now written are correct when
[ V¢ — v; | € 9, T, the electron thermal velocity. We also note that if the
random vélocity px* is used in defining p,, m,, T,, the term divp,us®
does not appear in the equation of motion [1 and 21
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not exceed the order of the electromagnetic force; otherwise, the influence
of the electromugnetic force on the medium will be neglected. From this, it

£

ollows that U_Q S, m

W;

i (3.9)
i 1. Q Q Yy
ldivpw|sS—lixH|, Uz, *(;,;‘Sm

1, .
|divpsuu | —|ixH],

We note that in the case |divpuu|<|(JHII/c(U> Q/0) the 1nertial
term may be omitted in the equation of motion. In this case, the equation
of motion reduces elther to the magnetohydrostatic case (1r viscous forces
are smaller than electromagnetic forces), or to the magnetohydrodynamic
Stokes)equation (if the viscous forces are comparable to the electromagnetic
forces},

We should clarify when the diffusion term may be neglected in the equation
of motion., It is easily seen that peuu / div pvv = (%m—l, When U <& m's
the diffusion term div p,Uu may be neglected in the equation of motion,
which in this case coincides with the egquation of motion in ordinary magneto-
hydrodynamics. When g~m'/:, the diffusion and inertial terms are of the
same order, and depending on the particular problem, they either bdboth remain
in the equatlon, or both are omitted when compared with other terms. When
UsS 74/-, the inertial term may be omitted in the equation of motion, which
then reduces either to the magnetohydrodynamic Stokes equation, or to the
equation of magnetohydrostatics. For the estimation of the term div p,uu,
it is necessary in the last two cases to compare it either with the viscous or
the electromagnetic terms,

When v,/ v;<€m, =V, {.e. the mean velocity is approximately equal
to the mean velocity of -ions. This 1inequality does not violate the gener-
ality; for the sake of definiteness we shall use 1t below,

In the derivation of Equations (1.1) to (1.3) [1], it was assumed that
[u|_=_|v.—-v.;|<v,7',where v,T 13 the termal velocity of the electrons.
Using this lnequallty, we obtain the estlmate

| div poun|~py(ve—vi)2/L <& nmvT /| L ~nTy /L = p,/ L (3.4)

We estimate the terms in the equation of motlion, when the order of the
term va, | ~ Pe /L, i.e. the change of p, over the characteristic length
is of the order of p,.

Wenote that when | 4iv pvw |~ |V pl such a large variation in p, 1is pos-
sible only with significant changes in the velocity. Thus by (3.4) {:he term
div p,uwu may be neglected in the equation of motion. In case the sum of
the remaining terms on the right-hand side has the order div p,ua , then
the internal term has the same order. Then to a first approximation the
inertial term may also be omitted in the equation of motion. If, in addition,
the viscous term is smaller than the pressure force, then the equation of
motion reduces to magnetohydrostatics; if viscous and pressure forces are
of the same order, it reduces to the magnetohydrodynamic Stokes equation (or
to the simple hydrodynamic Stokes equation if the electromagnetic forces are
smaller than the pressure forces).

It is easlly seen that

ldivp,un | < ¢t jx B, UQ/wiKm when [VP|~PJ/L  (2.5)
From (3.3) and (3.5) follows Q/ w;<& mh.
It is not difficult to show. that in the case when | VP!~ Po /L,
|th‘|~pi/L, the ratio |diva.|/}Vpe!l and {divail/}Vp;l are equal in order

to the quantities T, /T <<€ 1 and % /T <& 1. In other words, the viscosity may
be neglected in the equation of motion in this case. As metioned above, this
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is valid only for sufficiently large velocities.

We compare the order of the viscous terms w, and m, To this end, we
write the expressions for W™, and ;™ for definiteness; we shall do this
for the case when the magnetic field is parallel to the z-axis:

(1 .. oy i) v oy v
mem = — et (g divy —32) — s (52— 30 —na (52 4+ )
d 2
M** = — 1),° (—::—divv—%—l—-%divu——é‘zi)— (3.6)

P T ) I - B D P
oz ax 0z 3y 8 \oy oz dy oz
The remalning terms of the viscous tensors have the same order as the term
n**, We note that for any w,r, among the five ion viscosity coefficients
there always exists at least one (n,'), whose order (cf. Section % of [1])
1s greater or equal to the order of %he other viscosity coefficlents
§»-ngr{q.ihe same may be said for the electron viscosity coefficients,
which in order, are smaller or equal e® ~ n,T7,.
In what follows, we differentiate two cases. Case (4), when []6;‘1, 80
Q/ 0;< 1(3.3). Then in the expression for m, the order of Oul/ dzy
will be smaller or the same as that of Ju! /[ dzy.

Case (B), when U > 1, in which case 0/w, may be arbitrary. In this
case, the order of n, 1s determined by the terms 0ul/ 0xx.

Let us estimate the order of 0/w, for a typical flow of a conducting
medium in a channel., Let ¢ = 106ém/sec , I = 100 cm , x = 10t*gauss, then
Q = V/L ~ 10°sec?, w,~ 10°sec!, (/w,~ 105 < 1. From this,it is clear
that In many cases of practical interest, the inequality Qﬂm,~< 1 comes
true.

Comparing m, and m, , according to (3.6) and using Expressions (2.1)
for r, and r, , we obtain that in the equation of motlon the electron and
ion viscosity is of the same order

T~y when To~ @mYhTi (A); \To= @mUTi (B)

The straight line 1, described by Equations I = (2m)% T'; in case (4)
and T, =(2mU™®)" T4 1n case (5), 1s drawn in Fig.1. Below this line

To < @myh T;, Ty < @QmU2ET;, %<
Above this line

T,> @mysT;,  T,>@mUHT,  w,>m

Consequently, in two-temperature plasmas with sufficlently high electron
temperatures, the cases may arise that in the equation of motion the electron
viscosity must be considered together with the lon viscosity, and sometimes
it must be considered although the ion viscosity can be neglected. In the
case of one-temperature plasmas, the electron viscoslty 1s usually neglected
in the equation of motion. As is clear from the estimation procedure, this
is Justified only when U <Z (2m)’*. When U 1is of the order of or greater
than (2»09& the electron viscosity 1ln order of magnitude may be comparable
to or exceed the lon viscoslity, respectively, and must be included in the
equation of motion.



1042 V.V. Gogosov

As shown above, the order of the viscous terms must not exceed that of
the electromagnetic terms.

| div (t + ) | < e[ jx H| .7)
In the case when |div (%, + ;) ] <K ¢! | jxH|, the viscous terms may be
omitted 1n the equation of motion.

4. Bstimation of terms in the generalised Ohm's law, Adding the first
equation in (1.2) multiplied by — e/m, and the second equation multiplied
by e/m, , using (3.1) and taking info account Mi/ Me¢ = M > 1, we obtain
an equation which 1s called the generalized Ohm's law

dj . 1. . . j e e e . _
T IGVY (VY= (V) = Vee — povp e diva

. 2 1 . e e
— L divm +%<E+ Tva)—%meJxH—aRu—m—eRT (4.1)

%

The expressions for R“’. and Rr are taken from (1.5).
We shal;l. compare the order of the viscous terms
C,=|div x| el me, Co = | div | e/m;
in Ohm's law. We can show that
Cr~Cy 1r (A) T~ @A Ti,  (B) Te = @m™ UR T

The straight line 2, described by Equations T, == (2m Y)%T; in case
(4) and T, = (2m *U™?)'sT; 1in case (p), 1s shown in Fig.l. Straight lines
1 and 2 divide the quadrant into three regions, a,, a, and g5 , in which

(@) @mys T; < T, CmU2Ys T, < T, (4.2)
(@) Cm VYo T, LT, L @2m)sT;, Cm U1, LT, <& 2mUS T,
(aj) T C2m™)5s Ty, T.<K @mU 0Ty
Thus, in Ohm's law . (4.3)
‘div %, | ‘div 7 | | div m, | ldlv 7 | g
- > — in reglon oy -+ dg, —me = T in region as
e 1

In the equation of motion
ldiv i, ] = | div @ | in reglonon, [ div |>| div m, [in region s a3 (4.4)
We estimate the order of the viscous terms in Ohm's law (L4.1).

We shall compare the terms djv 1, / M, divim; / m; with the term
jxH / em,,using Formvlas (3.7) and (4.4).

In region o5 the term \divﬂe]<[diVﬂil§|jXHl/C, 80
[ diva|/m<€|§ xH|/eme.

Consequently, in Ohm's‘law,
|div o, |/ me < [ diva |/ m << | jxH]|/ cm,
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and the viscous terms need not be consldered.

In reglon a, the tern [divam, | <L [divay || xH|/¢, 5o
| div m, |/ m, | {jﬁj | / ¢m,. Consequently, in Onm's law, we have

[dive |/ my<L | diva, |/ m, L |jxH]|/ cm,

and the viscous terms need not be included.

In region g, the term |divm || diva, | lixBl/e, so

] div | {fm, < & jdivn, | / mg,\§3 X H{ [ em,. Consequaently in Ohm's law
| div |/ m <] div e, |/ me T XH |/ ome

In other words, in regions az and gy, viscosity should not be considered
in Ohm's law (1&.1) In region q,, ion viscosity should not be considered in
Ohm's law (4,1). Electron viscosity in Ohm's law must be included or may be
neglected in reglon o, btogether with the term JxH /em,, 1rinthe equation

of motion viscosity is considered  (|divm| < |divam, | ~|jxH]|/ ¢).
Electron viscosity should not be considered in oy 1f 1in Equation (3.2) vis-

cosity 1s not included (| gjy ;| < | div e < | jXH|/ ©).
The order of the invisci‘d terms in Ohm's law {4.1) is glven as follows:?
—~ ]_d)_l.wl jdivv|~@Gy) v ~1IV/L ~ en VQU
Co~ ;(JV) JI~m VQU?, Cy~ | Ry -»-:~Ie2n/o'me ~ neVU /T,
(4.5)

62}1

Co ~ .__-1v x H | ~ enVw,,

m, ¢

3 ¥
i~ el v c7~-c%;u><ﬁl~env’wem o he

Cgrﬁ,_?n‘i;wpi;, 69"?:7;33 x H| ~ enVoUm, [ mi, €' <Cq

Using {4.5), we compare the terms in Ohm's law (4.6)
T.
Y o _pe 6 U oy o T
C ~ Tp / T "5; -~ U w; E) Ca 7,0, ’ Cs ’ [oX] Tg
Using (3.3}, (%.6) may be written in the form
G2 1t . G- Q & < o 47
'@_s‘kzg"rsme ' Cs — @, Cs et @D

The characteristic problem time 7 1s much greater than the electron
mean collision time r,, thus from (4.6}, it follows that (3 <& (. Conse-
quently, the terms (; and (¢, may be omitted in Ohm's law. In the case when
| VPe| ~ ps / L (inequality (3.5) comes true), the term C, <L C, and may be
omitted in Ohm's law; 1if inegualities (3.3} hold, there are cases when O(,
must be considered in Ohm's law. The term Co' X Cy<€ Cy, thus the term
C,’ may be omitted in Ohm's law. Usually T, >STim™ and C,>>C, (4.6);
in case Je <X Tym™ the term C3 <€y  and may also be omitted in all
the forms of Ohm's law given below.
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5. The possible forms of Ohm's law. Using the estimates obtained above,
we now glve the varlous possible simplified forms of Ohm's law. We first
consider the case, when the order of magnitude of the current (and conse-
quently the parameter U )} is unknown, but the orders Q/w, and w,T, are
known. Then in comparing terms in Ohm's law, 1t is impossible to use the
convenient estimates (4.6), and it is necessary to use estimates (4.7), which
contain considerably less informatlon than (4.6).

1. Let ®Te<€1. Then C; <C, €0y C,<€Cy (4.7), the anisotropy in

the transport coefficlents for the electron motion is absent. The following
cases are possible.

1.1. When Q/0; <67, ratio ¢;/C, may be arbitrary (4.7). Ohm's law,
in general, assumes the form

. 1
J=0(E+~C—VXH) 5.1)
1.2, When Q/0;3>0.T; 0> ¢ (4.7). Ohm's law assumes the form
j=o0E (5.2)

2, Let w,7,~1 . Then 01§C7~05- The following cases are possible.

2.1. When 2/0;< 0T the ratio Cs/Cs may be arbitrary (4.7). More-
over, in region ¢, the viscous term may be of the order (s or (, . The
term (, may be of order (s when yQ/w;,~m (4.6). Ohm's law takes the
form

1 1,
__;lnle%(jv)j= Vpe 4 diva, + en (E+—c—va) —TJXH—— R,—Rp (5.3)

2.2 When Q/a;> 0,7, ~1; ¢:> 0, (4.7). In region q, we may have
C,~0 . The term (, may be of order (. when' U/w, ~m (+.6). onm's law

has the form
(]

me . _ . . . 1.
—e—gﬁ(JV)J='\'7pe+dlvne+enE—-z—JxH——R.u~RT (5.4)
3. Let w,1,> 1 . Then (¢,>» ¢ (4.7). The terms (, and (; must be

compared with (,. The following cases are possible,

3.1, When Q/0;<1, the ratioc (,/C, may be arbitrary (4.7).
Moreover, in reglon- g, the viscous term (; may be of order (, . The term
C, may be of order ¢, when UQ/w,~m according to (4.6). Ohm's law has
the form

m, ., . . 1 1.
,__CTZ (jv) j = vp. + dive, + en(E -+ — VX H)—-— —Jx H——RT(5_5)

3.2, When Qw;>>1; C; 3> Cs-In the reglon o, thé viscous term ¢,
may be of order (¢, . The term (, may be of order ¢, when M/w, ~m
according to (4.6). Ohm's law has the form

m
— ;i?e.(jV) j= vpe + divw, 4+ enE — % jxH — Ry (5.6)
In the temperature region a,+ us the viscous term div r, should not be
considered in the Ohm's law (5.3) to (5.6). 1In region a, the electron vis-
cosity must be considered only when it is also considered in the equation of
motion. In cases when the inequality UQ / @; <€ M (3.5) holds, the term
m, (Jj7) j/ €'n  should not be included in (5.3) to (5.6). In fact, for these
conditions, the Ohm's law in the form of (5.3) was used in [3] to study heat
exchange in fully ioﬁized two-temperature plasma, moving in a channel with a
magnetlc field.

In writing Onm's law, we have used the fact that B may be larger and
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even much larger than the term v X B/p . If [E| ~ |v X H|/o, then those
forms of Ohm's law in which the term v X H/s 1s absent, the term E will
also be absent.

If the order of magnitude of ¢y and g,T, 1s known, then using the esti-
mates (4.6), we may write the forms of Ohm's law in a more definite way.

4, Let 0T, <€1; then C,<C;<€Cs Ci<€Cs The following cases are
possible,

4,1, When U ~w,7,; then Cy~Cg Ohm's law has the form (5.1).
4,2, When U<€w,T,; then Cs<€Cs. Onhm's law has the form

E= _—i— [vH] (3.7
4.3, When U > ®g%;  then Cy > Co. Ohm's law has the form (5.2).

5. Let w,7, ~1; then (s ~ (C, . The followlng cases are possilble,

5.1. When U €1, then Q/@; €1 (3.,3), C, <€C, <€ C,. Ohm's law takes
the form (5.7).

5.2. When U ~1; then C1<Cr~Ci~Cs CeXCq(y 6), onm's 2aw
assumes the form (here written for ¢, ~0,)

1 1,
0=vpe+divne+en(E+Tva)—TJxﬂ—Ru—RT (5.8)

5.3. When U >1; then C1 <C, ~Cy>C,. Wnen UQ/o;~m (4,6), the
term (, may beof order (5. Ohm's law assumes the form (5.%)
{here written for C,~0C,, Cui~Cy).

In the cases when the viscosity is insignificant and UQ/w;<€m, the
terms div s, me(jV) j/e2n in Ohm's law in the last two cases must be omitted.

6. Let m,T, > 1;,then C; >>Cs. The following cases are possible,
6.1. When [J < 1; Ohm's law reduces to the form (5.7).

6.2, When U ~1, €, €C;~Cq, C, < Cy Ohm's law assumes the form
(here written for 0, ~0,)

{ 1,
O:Vpe—{—di‘vne+en(E+——C—VXH)—_C“JXH'—RT (5.9)

6.3. When U >>1; then C;>C4 €y <Cy When UQ/0;~ ™ the term 0,
may be of order (,, Ohm's law assumes the form (5.6) (in this
case written for O, ~ 0y, Co~0Ch)e

In the cases when the viscoslty is 1nsi§nif1cant and UQ /o; <€ m the
terms div m, and m, (jV) j/e2n in the Ohm's law (5.9) and (5.6) will be
absent in the last two cdses,

We note that in estimating the terms, 1t has been assumed that ¢y ~ O,
(n\JT¢ ~ /Pe)- However, the cases Cy <'C7 and Cy > Cq are also possible (e.g.
in & boundary layer). In the last case, the term 0, must be compared with
¢, or with the term e*nE/m,; when the orders are equal, (, must be kept
(or rejected) in all the Ohm's law forms (Equations 5.1} to (5.9)) whenever
these other terms are kept (or rejected).

Let V¥ ~ 10Fcm/sec , H ~ 10*gauss, variatio;}aof T, in distance I cm of
the order of 10%* °K, F ~ Vi/o ~ 10~ *gauss¥®cm ¥®sec™!. Then from €, ~ Cs
follows F ~ 10731-lgauss em- ¥ gec~I, From this, it is obvious tha% for

L ~ 10"2cm , the terms (, and (, are of same order.

If B~ |vxH|/c, then E may be omitted from the Ohm's law whenever
the term v X B / ¢ 1s discarded.

From the estimation procedure, it follows that for sufficlently high elec-
tronic temperatures, in certain cases we must include in the Ohm's law terms
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connected with the electron viscosity, so that Ohm's law no longer remains
an algebraic relation, but becomes a nonlinear differential equation.

In the case of a single-temperature plasma, the estimation of terms in
Ohm's law has been carrled out in [4] under the assumptions of U ~ 0/u,
(inertial term and electromagnetic terms of same order) and % <€ m,. For
temperatures T,~ T,, the present results give possible simplified forms of
the equation of motion and of Ohm's law for one-temperature plasma without
these additional assumptilons, and thus do not agree with the results of [4].

BIBLIOGRAPHY

1. Braginskili, S.N., Iavleniia perenosa v polnost'iu ionizovannol plazme
Transpcrt Phenomena iq a Fully Ionized Plasma). Collected works
Voprosy teorii plazmy"(Problems in Plasma Theory). Gosatomlzdat, 1963.

2. Kihara, T,, Macroscopic foundation of plasma dynamies., J.Phys.Soc,Japan,
Vol.13, N 5, 1958,

3. Gogosov, V.V,, Teploobmen v polnost'iu lonizovannol neizotermicheskol
plazme, dvizhushchelsia v kanale s magnitnym polem (Heat exchange in
fully lonized nonisothgrmal plasma moving in a channel with a magnetic
field), PMTF, N 2, 1964,

4, Baranov, V.B. and Liubimov, G.A,, O forme obobshchennogo zakona Oma v
polndst'iu ionizovannom gaze (On the form of the generalized Ohm's law
in a fully ionlzed gas). py¥ Vol.25, M 1, 1960.

Translated by C.K.C.



